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Abstract. We study the way in which electromagnetic waves at arbitrary angles of incidence 
are localised in the direction normal to the strata of a randomly stratified medium. We 
point out differences from the case of normal incidence and, in particular, differences 
between the two polarisation modes which amount to a type of birefringence. 

1. Introduction 

There has been considerable interest in the localisation of classical waves [l-131 in 
random media. One reason for this is that classical waves obey linear equations of 
motion and  should exhibit the consequences of localisation in a clearcut way. By 
contrast, the localisation of electrons in amorphous materials can be affected by 
electron-electron interactions [ 121. 

In this paper we examine the problem of electromagnetic waves propagated in a 
randomly stratified medium. The case of waves incident normal to the strata has been 
considered by a number of authors [6-91. Here we consider the more general case of 
a wave with an  arbitrary angle of incidence. In contrast to the case of normal incidence 
the two polarisation modes behave in distinct, though similar, ways. They exhibit 
therefore a kind of birefringence. The equations for both modes are analogous to the 
Schrodinger equation for an  electron in a one-dimensional random potential provided 
we allow for the possibility that it has a fluctuating effective mass [14]. 

2. Maxwell’s equations in a stratified medium 

We will assume that the randomness of the medium is represented by a position- 
dependent dielectric constant E = E o f (  r ) .  Later we specialise to the case f (  r )  = f ( z ) .  
The displacement vector is 

D = c O f (  r ) E .  (2.1) 

In  an  appropriate gauge, the electric and magnetic fields are related to the vector 
potential A.  Thus 

E = - A  (2.2) 

B = C x A .  (2.3) 
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In the absence of free charge and current density Maxwell’s equations imply that 

v Cf(r)k) = 0 (2.4) 

and 

( l /c2)f(r)A + V x ( V  x A )  = 0 

where c is the velocity of light. 

The polarisation modes which can be propagated in the medium have the form 
For a stratified medium f ( r )  = f ( z ) .  Let n be the unit vector in the z direction. 

A=exp(-iwt+ik,  r ) 4 ( z )  (2.6) 

where n - k, = 0. If we make the replacements 

a .  
at 
--+ -1w 

a 
az 

V + ik,  + n- 

then (2.4) and (2.5) become 

and  

W 2  

C 2  
- - f ( z ) &  + (ik, + na/az)  x [ (ik, + nd/dz)  x 41 = 0. 

For w # 0, (2.9) is implied by (2.10) and so is redundant. 
The two polarisation modes have the forms: 
(i) the orthogonal mode, for which 

4 = e44z) 

where e *  k, = e -  n = O ;  
(ii) the parallel mode, for which 

(2.10) 

(2.11) 

4 = a ( z ) i - + P ( z ) n  (2.12) 

where iL is the unit vector parallel to k , .  
Equation (2.10) implies the following equations of motion. For the orthogonal mode 

(2.13) 

For the parallel mode 

(2.14) 

where we have used an  obvious matrix notation. 
Clearly (2.13) for the transverse mode is exactly similar to the Schrodinger equation 

for an  electron moving in a one-dimensional potential. Equation (2.14) for the parallel 
mode is a little complicated. The analogy among all the equations can be brought out 
by expressing them in first-order form. 
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If we set 

0 

C 
- 4 = * '  

then (2.13) is equivalent to 

(2.15) 

(2.16) 

where k = w / c  is the vacuum wavenumber. If we introduce y ( z )  so that 

w 

C 
- y = i k i P - c u '  (2.17) 

then (2.14) implies that 

(2.18) 

The Schrodinger equation for the electron moving in a one-dimensional potential 
V ( z ) ,  with fluctuating effective mass m ( z ) ,  at energy E is 

Setting 

we obtain the first-order equation 

0 (:') =+( -2(E - V ( z ) )  0 

(2.19) 

(2.20) 

(2.21) 

Clearly all three problems have a similar form and this is identical to the form of the 
equations for normal incidence discussed in [6-91. 

The analogy with the electron case is interesting. For both the parallel and 
orthogonal modes the vacuum wavenumber k = w / c  plays the role of ( h ) - ' .  Large 
frequency corresponds to A + 0 ('classical' limit) and low frequency to h + 00 ('quantum' 
limit). For the orthogonal mode the quantity corresponding to the effective mass is 
constant, while that corresponding to the energy is 

E , = f - k : / k 2  (2.22) 

where f is the mean value off:  For the parallel mode f ( z )  plays the role of the effective 
mass and the energy parameter is 

(2.23) 

This analogy alerts us to the possibility that physical electromagnetic modes exist 
for which either or both of E ,  and E2 are negative. Since we assume f ( z )  3 1, these 
modes have transverse wavenumbers satisfying 

k,>k (2.24) 

- 
E2 = 1 - ( k : /  k2 )Cf - ' ) .  
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and therefore do not correspond to a real angle of incidence from the vacuum. 
Moreover, in the electron problem we have 

E 2 min( V (  z ) )  (2.25) 

and in the electromagnetic case the corresponding condition 

k t / k 2  s max(f(z)). (2.26) 

The physical picture then is that the waves with values of k ,  near its upper bound are 
constrained by internal reflection to travel along planes of highest dielectric constant, 
just as the most tightly bound electrons are trapped at the bottoms of the deepest wells. 
These deeply trapped modes are a new feature of the electromagnetic waves which is 
absent for the case of normal incidence ( k ,  = 0). 

3. Characteristic probability distribution 

The first-order equations of the previous section all have the form 

where p ( z )  is a positive quantity. Following Halpern [14] we introduce a variable 

5 = v / u  (3.2) 

5' = - A  ((T(z) + p ( z ) l 2 ) .  

which then satisfies the differential equation 

(3.3) 

As in [6-91 the statistical features of the model are introduced by allowing U and p 
to become functions of an n-dimensional vector-valued stochastic variable 5( z ) .  
Equation (3.3) then becomes a stochastic differential equation for 5. 

The induced probability distribution for 5, P ( 0 ,  satisfies [6] 

Q * P ( t )  = 0 (3.4) 

where Q* is the operator adjoint to the operator Q which is defined through the 
stochastic process [ ( z )  by the formula 

1 
Q f ( 5 0 )  = F;; E L f ( S ( Z +  h ) )  - f (5o ) l5 ( z )  = 501. (3.5) 

The joint probability distribution for 5 and 5 then satisfies 

Integrating over 5 we find 

(3.6) 

(3.7) 

This approach allows us to discuss a wide class of statistical models. 
The physical properties of the system can be computed from the probability 

distribution P ( 5 , 5 ) .  One particularly important property is the extent to which the 
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localised mode functions are spread out in space. This can be specified by means of 
a localisation length 1 defined in the following way. First define a measure of ‘size’, 
r, for the mode function by the equation 

r2 = pu2  + q v 2  (3.8) 
where p and q are positive quantities. Next, we compute the mean value y of the 
logarithmic rate of change of r :  

- 
y = (lnr)‘. (3.9) 

The average shape of a mode will then roughly behave like exp( i yz) .  We now identify 
the localisation length 1 with y - ’ .  The precise value of 1 depends on the particular 
choice of p and q and is, to some extent, arbitrary. A fairly natural choice which we 
will adopt is 

P = IC1 q = p.  (3.10) 

We then find 

(3.11) 

In the limit of large A, (3.6) is dominated by the ‘convection’ term and becomes 

a 
- ( 4 O + P ( 5 ) 5 * ) P ( 5 ,  5 )  = 0. a l  

( i )  a(t)>O for all 5, 
(ii) a(5) fluctuating in sign. 

(3.12) 

I t  is clear that in this limit we must distinguish between two cases: 

In case (i), the positive case, (3.12) has a solution 

where we have imposed the normalisation condition 1 d5P(5, 5 )  = RO. 

(3.13) 

(3.14) 

In case (ii), the fluctuating case, we must modify (3.13) in regions where cr(5)<0, 
since otherwise the probability distribution would acquire poles in integration range 
at points 5 = +(t([), where a(,$) = [ - 0 ( 5 ) / p ( 5 ) ] ” ~ .  This is unacceptable. Nevertheless 
there is a distribution solution of (3.13) when IT(() < 0, namely a combination of S 
functions with support at the zeros of the convective flow, 5 = *a((). The zero at 
5 = - a ( [ )  is unstable since the flow conveys the probability distribution away from 
this point. The zero at 5 = a([) is stable since the flow sweeps any distribution into 
this point. Retaining only the stable 6 function we find the modified form of (3.13) is 

(3.15) 

where e(x) is the Heaviside step function. 

then have 
From this result we can compute the localisation length in the limit of large A.  We 

(3.16) 
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We then find contrasting behaviour in the positive and fluctuating cases. In the 
positive case there is no contribution of O(A) to I - ' .  It was pointed out in [6] that in 
this case the first non-vanishing contributions are of lower order in A and are model 
dependent. We will return to this point in  the next section. In  the fluctuating case, 
the result is model independent and is dominated by the regions of negative ~ ( 5 ) .  

When A is very small, (3.6) is dominated by the diffusion term and becomes 

Q * P ( 5 , l )  = 0 (3.17) 

with a solution 

P ( 5 , l )  = m ) d ( 5 ) .  
From (3 .7 )  it follows that 

(3.18) 

a 
- (5 + p5') 4 ( 5 )  = 0. (3.19) 
a l  

Again we have two cases: 
(i) e>>, 
(ii) e<0. 

For case (i) we find 

(3.20) 

For case ( i i )  

P ( 5 , l ) =  R 5 ) 6 ( 5 - E )  (3.21) 

where 6 = ( - @ / p ) " * .  When @> 0 we see again that the leading term O(A), which 
contributes to I - ' ,  vanishes. The first non-vanishing contribution is O( A ? ) .  

When < 0, however, we do  obtain such a contribution, namely 

I - '  = A ( -@p)1'2. (3.22) 

4. Slab models 

In order to illustrate a higher-order calculation we consider a model discussed in [6], 
which comprises slabs of material within which the random variable 5 attains a constant 
value which is distributed according to the distribution P ( ( ) ,  independently for each 
slab. The thickness of a slab is also a random variable distributed according to a 
Poisson distribution. If the mean thickness of the slabs is U, then from (3.5) we find 

and hence 

For the case of positive a((), we can obtain higher-order corrections to (3.13) by 
setting 

X 

(4.3) 
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where Po((, 5 )  is given by (3.13). We find from (3.6) for n S 1 

(4.4) 
a 

a5 Q*Pn-l(5,5) +- ( ~ ( 5 )  +p(5)iz)pn(5, 5) = 0. 

Taking into account the correct normalisation condition for P( 5 , l )  we find from (4.4), 
for n = 1, that 

The contribution to the inverse correlation length is, of course, 

Using (4.6) and (4.2) we find for the slab models described above that 

where 

(4.8) 

When a( 5) can change in sign it is not so straightforward to calculate higher-order 
corrections. In the appendix we analyse a simple two-component slab model to show 
how the &function distribution is approached in the limit of large A.  These results 
are consistent with those of [6]. 

To study the limit of small A we expand P(5,  5 )  thus: 

(4.11) 

(4.12) 

(4.13) 
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Taking account of (4.13), and using the appropriate form for &,(l), we find 

The result for the inverse localisation length is finally 
- 1 A2a - - 

I - ’ = -  - (526p2+p2Su2-2apspSu).  
4 ep 

(4.15) 

(4.16) 

Again this is consistent with results quoted in [6]. 
When 6 < 0 the corrections are more difficult to compute. 

5. Interpretation of the results 

The results of the previous sections may be applied to the propagation of electromag- 
netic waves by identifying A with the vacuum wavenumber k = w / c .  Large and small 
values of A therefore correspond to high and low frequencies, the limits being taken 
for fixed values of the ratio k, /  k. 

For the orthogonal mode we have 

The case U ( ( )  > 0 for all 5 corresponds to the regime 

k:/k2<min f ( 5 )  (5.3) 

which includes the range k:/  k 2  S 1 for which the vacuum incidence angle 8, given by 

sin 0 = k, /  k (5.4) 

is real. For values of k J k  satisfying the inequality in (5.3), our analysis confirms the 
results of [6] and shows that, in the slab model, the localisation length 1- has a finite 
limit at high frequencies given by 

In the case of a weakly random medium, for which 
- 
6 f 2  << (f - k: /  k 2 ) 2  

we find 
- 

/ - I = - -  1 1 - 6f’ 
16 a (f - k ’ , / k 2 ) ’ ’  (5.7) 

For the parallel mode we have 

(5.6) 
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The slab model result in the high-frequency limit becomes 

(5 .10)  

Note that 

1, f I , ,  9 ( 5 . 1 1 )  

This is an  example of birefringent ‘localisation’. In the weakly random case we have 
- 

1 1  S f 2  2k: I ; = -  ’ 16a ( f - k : / k 2 ) 2 ( 1 + F )  - ( 5 . 1 2 )  

We see that for small sf both I ,  and Ill are much greater than a, the mean slab 
thickness, and  both are sensitive to the value of k J  k, decreasing as k,/ k is increased 
from zero. The rate of decrease is however different for the two cases since 

( 5 . 1 3 )  

and this increases with k J k .  It follows that the orthogonal mode is less strongly 
localised than the parallel mode when the angle of incidence is increased from zero. 
Although these results have been obtained in a slab model they presumably give an  
indication of the qualitative behaviour of other models. 

When k:/ k2 is so large that we enter the regime where U (  6 )  fluctuates in sign we 
find an  altered model-independent behaviour for the localisation length at high frequen- 
cies. By referring to ( 5 . 1 ) ,  ( 5 .2 ) ,  ( 5 . 8 ) ,  (5 .9)  and (3.16) we see that both the orthogonal 
and parallel modes have the same limiting behaviour, namely 

(5.14) 

This result has a natural interpretation. We can visualise a mode passing through 
regions for which (T is positive and those for which it is negative. In the former the 
wave will be oscillatory with essentially a zero value for the logarithmic derivative, y, 
locally. In the latter the wave is naturally damped with a value for y given by 

y = ( k :  - f ( [ ) k ’ ) ’ ’ ’ .  ( 5 . 1 5 )  

It is then plausible that the mean value of y which yields I - ’  is given by an  average 
over the regions where y is non-vanishing. This is just what is provided by (5 .14) .  
With this interpretation it is not surprising that the two modes behave in the same way. 

We see from ( 5 . 1 )  and (5 .2 )  that, for the orthogonal mode, 

p = 1  

6 = f - k:/  k2  
~- 
sp2 = spsu = 0 

sa2 = s f 2 *  

- -  

(5 .16)  
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It follows then from (4.16) that, in the low-frequency limit, 
_. 

1 6J2  Sf’ 
1-1  =-a -  
’ 4 C‘ ( f - k t l k ’ ) ‘  

Similarly from (5.8) and  (5.9) we see for the parallel mode that 

p f  

sp2 = s f ’ - -  

e=1-- kZ, cf’) 
k2 

- 
6u2 = (k:/ k’)2( Sf’)’ 

- k: -- 
k 

swap = 7 (ff - I  - 1). 

For weak disorder 

- 1 Sf’ cf’)==+-j- 
f f  

- 
- k: Sf’ 
swap =- 7. 

k’ f’ 

In that case we have from (4.16) 
- 

1 y  =;a 7 sf’ (1-2k:/fk2)’ c (f-k:/k2) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Once again we see that there is a difference between the localisation lengths of the 
two modes. In the low-frequency limit we find 

/Jill 1 (1 - 2k:/fk2). (5.21) 

That is, the orthogonal mode is more strongly localised than the parallel mode, reversing 
the situation which holds in the high-frequency limit. Again the effect is stronger the 
greater the angle of incidence. 

In  the regime where e<O we see from (3.22) that 

1;’ = (kZ, -fk2)’12 (5.22) 

and 
- 

IF1 = [ f c f ’ ) k :  -fk2]”’. (5.23) 

For the orthogonal mode the medium behaves as if it had an  effective dielectric constant 
This a o t  quite true for the parallel mode because of the difference between 

(f)-’ and U-’). For weak disorder 
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6.  Conclusions 

We have examined the propagation of electromagnetic waves in randomly stratified 
media. Both polarisation modes satisfy similar equations and exhibit the localisation 
effect in similar ways. There are differences between the modes in their detailed 
behaviour, however [ 151.  For real vacuum incidence angles our analysis of slab models 
suggests that at high frequencies the orthogonal mode is less localised than the parallel 
mode, while at low frequencies the reverse is true. Both effects increase with increasing 
angle of incidence. When the transverse wavenumber if sufficiently large, the nature 
of the waves changes. They become trapped waves which exist due to internal reflection. 
For such waves the high-frequency behaviour of the localisation length is model 
independent and identical for both polarisations. At low frequencies, however, the 
distinction between the modes again appears, the parallel mode being more strongly 
localised than the orthogonal model. Further work on other models is desirable but 
requires an extensive numerical investigation. 

The reflection of electromagnetic radiation at the surface of a randomly stratified 
medium is a problem of considerable interest with potential applications to microwave 
investigations of the Earth's surface. Some of the properties of such reflected waves 
are determined by the probability distributions we have studied here. However, other 
problems, such as the depolarisation of an incident plane-polarised wave, require an 
investigation of a joint probability distribution of the 5 variables associated with both 
polarisation modes. We hope to examine these questions in future work. 

Finally it would be interesting to investigate the trapped waves which exist for 
large values of the transverse wavevector. One possible method of stimulation is by 
the passage of a fast charge particle through the medium emitting localised Cerenkov 
radiation. The theoretical analysis of such a process requires an understanding of the 
density of states for the trapped waves. 

Appendix 

In this appendix we examine a simple two-component slab model in order to understand 
the difference between the regimes in which U(() is strictly positive and in which it 
fluctuates in sign. We let 5 be a random variable taking the values * l  with equal 
probability and set 

P ( * l )  = P* ( A l l  
U( * ) = U* * (A21 

We assume U, > U- so the fluctuating regime corresponds to the case where U- < 0. 
We then have 

P(5') = is( 5' - 1) +$( 6 + 1). (A3) 

P ( 5 , l )  = f ( 5 ) ( 5 -  1 ) + g ( 5 ) 6 ( 5 +  1). ('44) 

The characteristic probability distribution for 5 and 5 has the form 

If we form the two-component vector 
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then it is easy to deduce from (3.6) and (4.2) that 

1 a 
a a l  

-- U V ~ X (  5 )  + A - M ( l ) x (  4') = 0 

where 

and 

.='( f i  -1  ' )  
We also introduce the orthogonal vector: 

.=") f i  1 '  

If we denote the inverse of M ( 5 )  by G(l) ,  then 

Introducing y (  5 )  where 

Y ( 5 )  = M ( l ) x ( l )  

we find from (A6) that 

A solution to this equation can be obtained in the following way. First, note that 

a 
-wTy=O 
a l  

so that 

w T y =  N (A141 

where N is a constant of integration. Then, using the identity 

U V T +  WWT = 1 (A151 

we see that 

where 

h ( 5 )  = vTG(l)u. 
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Now introduce F ( 5 )  such that 

We then find 

where K is a second constant of integration. 
The difference between the two regimes, a_ > 0 and a- < 0, is reflected in a change 

of character in the nature of F ( i ) ,  the solution of (A18). When CT- > 0 we can choose 

where ~ ~ ( 5 )  are defined through the relation 

It is then natural to choose io= -a; K and N are then fixed by the requirements that 

d[uTx( 5) = 0 

and 

Equation (A22) is equivalent to the condition that ( v T y ( l ) )  has a common value 
in the two limits 5 += fa. By expanding in powers of ( A a ) - ’  we can recover the large-A 
expansion discussed in 0 4. 

When a- < 0, A?([) has poles at the points 

The presence of these poles on the real axis changes the character of the probability 
distribution ~ ( 5 ) .  

A useful way of investigating the nature of this change is to express the solution 
of (A12) as a power series thus: 

On substituting into (A12) and equating the coefficients of ( 5  -a)”+’ to zero we obtain 
for the case n = 0 

Ly,  = 0 (A261 

where 

L = ( V  0 7 - E  E ) 
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with 

1 
~ A u ( - u - ~ - ) ” ~ ’  

E =  

Since we assume yo  is not the null vector, we require L to be a singular matrix which 
yields the incidial equation 

7(v - E )  = O .  (A29) 

The solution corresponding to 7 = 0 yields a dependence for x(5) which is smooth at 
5 = a. The other solution of (A29) implies that 

(A301 X(5 )  - ( 5  - a)-’+€ 

when 5 = a. Although an unbounded singularity when E is sufficiently small, it is still 
integrable and so cannot be ruled out as part of a probability distribution. 

When we examine the solutions of (A12) in the neighbourhood of 5 = -a, we 
obtain an indicia1 equation 

7( 7 + E )  = 0. (A311 

Again the solution 77 = 0 yields a smooth function x(5) at 5 = -a. However the solution 
7 = - E  yields a dependence for x(5) of the form 

X ( 5 ) - ( 5 + a ) - ’ - E  (A321 

which can never be an integrable singularity. It follows that the correct solution of 
(A121 is that corresponding to the index 7 = 0 at the point 5 = -a. Such a solution 
will have the integrable singularity indicated in (A30) as part of its structure. 

This analysis is confirmed by examining the new structure of F ( 5 )  when U- < 0. 
It is easily checked that a solution of (AIS), for the range -a < 5 < a, is 

x+ ). ~ ( 5 )  = (-)‘ ff -5  exp( 1 
a + <  2Aa ( U + P + ) ” ~  

The solution which is smooth at 5 = -a is obtained by setting Lo = -a and K = 0 in 
(A18). The result is 

For 5 < -a we analytically continue this result. Note that although, in (A34), both 
the integral and the factor 

have singularities at 5 = -a, these cancel in the product. As 5 + a the expression in 
(A34) shows a singularity structure of the type predicted by the power series analysis. 
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Returning to (A26) and (A27) we see that the choice 77 = E implies that, up  to a 
normalisation, 

Y o = ( ! l ) .  

This implies that, near 5 = a, 

We can see from this equation that, as h + CO and E + 0, the lower component of x(5) 
becomes more and  more singular. To preserve the normalisation of x( 5) it is necessary 
that B CT E. In the limit E -* 0 

&15-a/-'+' - s ( 5 - a ) .  (A371 

If we accept this behaviour for g ( 3 )  we then deduce directly from (A6) that, as A +a, 

the relative normalisation being fixed by (A22). Equation (A38) is the analogue for 
this two-component model of (4.6). However, we can see clearly in this simple model 
the nature of the non-analytic behaviour at 5 = a which gives rise to the above result 
for large A. 
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